Numerical Analysis and Scientific Computing Preprint Seria Unconditional long-time stability of a velocity-vorticity method for the 2D Navier-Stokes equations
نویسندگان
چکیده
We prove unconditional long-time stability for a particular velocity-vorticity discretization of the 2D Navier-Stokes equations. The scheme begins with a formulation that uses the Lamb vector to couple the usual velocity-pressure system to the vorticity dynamics equation, and then discretizes with the finite element method in space and implicit-explicit BDF2 in time, with the vorticity equation decoupling at each time step. We prove the method’s vorticity and velocity are both long-time stable in the L and H norms, without any timestep restriction. Moreover, our analysis avoids the use of Gronwall-type estimates, which leads us to stability bounds with only polynomial (instead of exponential) dependence on the Reynolds number. Numerical experiments are given that demonstrate the effectiveness of the method.
منابع مشابه
Unconditional long-time stability of a velocity-vorticity method for the 2D Navier-Stokes equations
We prove unconditional long-time stability for a particular velocity-vorticity discretization of the 2D Navier-Stokes equations. The scheme begins with a formulation that uses the Lamb vector to couple the usual velocity-pressure system to the vorticity dynamics equation, and then discretizes with the finite element method in space and implicit-explicit BDF2 in time, with the vorticity equation...
متن کاملA Numerical Study for a Velocity-vorticity-helicity Formulation of the 3d Time-dependent Nse
We study a finite element method for the 3D Navier-Stokes equations in velocityvorticity-helicity formulation, which solves directly for velocity, vorticity, Bernoulli pressure and helical density. Moreover, the algorithm strongly enforces solenoidal constraints on both the velocity (to enforce the physical law for conservation of mass) and vorticity (to enforce the mathematical law that div(cu...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملNumerical Analysis and Scientific Computing Preprint Seria On conservation laws of Navier-Stokes Galerkin discretizations
We study conservation properties of Galerkin methods for the incompressible NavierStokes equations, without the divergence constraint strongly enforced. In typical discretizations such as the mixed finite element method, the conservation of mass is enforced only weakly, and this leads to discrete solutions which may not conserve energy, momentum, angular momentum, helicity, or vorticity, even t...
متن کاملNumerical Analysis and Scientific Computing Preprint Seria A modular, operator splitting scheme for fluid-structure interaction problems with thick structures
We present an operator-splitting scheme for fluid-structure interaction (FSI) problems in hemodynamics, where the thickness of the structural wall is comparable to the radius of the cylindrical fluid domain. The equations of linear elasticity are used to model the structure, while the Navier-Stokes equations for an incompressible viscous fluid are used to model the fluid. The operator splitting...
متن کامل